Matthew Burke March 24, 2002 Math 434

Problem 2.3

Develop all of the processes necessary to solve the TopSpin game and write up an algorithm for solving it. Include a justification for how many of the states are reachable and, if possible, which permutations in S_{20} they represent.

Holding the topspin game with the purple disc away from you, let the counter-clockwise most position in the purple disc be the 1 position (left most position with disc away from you). Let the position clockwise from the 1 position be the 2 position, and so on for all twenty positions. Note the 20 position is one position counter-clockwise from the 1 position.

Let g and h be elements of S_{20} . Let g = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20) Let h = (1,4) (2,3)

Note that g is equivalent to moving all of the pieces one position in a clockwise direction, and h is equivalent to a 180-degree rotation of the purple disc. So g and h generate the TopSpin group G, and G is a subgroup of S_{20} .

Note:

$$g^{-1} = (20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1)$$

 $h = h^{-1}$
 $|g| = 20$ and $|h| = 2$

As with the Rubik's Cube, let $[hg] = hgh^{-1}g^{-1}$. Therefore $[hg^{-1}] = hg^{-1}h^{-1}g$.

$$[hg^{-1}] = (1,3,5,2,4)$$

So $[hg^{-1}]^2 = (1,5,4,3,2)$
($[hg^{-1}]^2 g^{-4}$)⁵ = (2,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3)
Then ($[hg^{-1}]^2 g^{-4}$)⁵ g = (1,2)

With this as an inspiration, we can permute one with anything in G.

let
$$a = ([hg^{-1}]^2 g^{-4})^5$$
.
Then (1,2) = ag

We claim
$$(1,n) = a^{n-1}(g^2a)^{n-2}g$$
 for $1 < n \le 20$

Note that $a^2 = (20,18,16,14,12,10,8,6,4,2,19,17,15,13,11,9,7,5,3)$, i.e. a^2 fixes 1 and shifts everything else two positions counter-clockwise (except 2 and 3 which move three positions counter-clockwise in order to skip 1). Essentially we have put 1 between 3 and 4. Similarly a^{n-1} will fix 1 and move everything else n-1 positions counter-clockwise putting 1 between the n and n+1.

Now in order to switch 1 and n we next need to put n between 20 and 2. Recall 1 is still in the 1 position and n is in the 20 position.

Note $g^2a = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)$, i.e. g^2a fixes the twenty position and moves everything else one position clockwise. So g^2a will put n between n-2 and n-1, $(g^2a)^2$ will put n between n-3 and n-2, and $(g^2a)^m$ will put n between n-(m+1) and n-m. In particular $(g^2a)^{n-2}$ will put n between 1 and 2. But recall that we have already put one between n and n+1, so 20 is next to 2. Thus after $a^{n-1}(g^2a)^{n-2}$, n is between 20 and 2 and since we moved n away, 1 is between n-1 and n+1. Finally n is in the 20 position and we want it in the 1 position, so g simply moves everything one position clockwise.

Furthermore we can permute any two distinct positions in G.

For any m, n with
$$1 \le m < 20, 1 < n \le 20$$
, and $m < n$.
 $(m,n) = g^{1-m} (a^{(n-m)} (g^2 a)^{(n-m-1)} g) g^{m-1}$
Note $(m,n) = (n,m)$ for any m and n.

Now we can show that $G = S_{20}$. Recall that G is a subgroup of S_{20} . Thus if we can show that S_{20} is a subset of G we are done. Let k be an arbitrary element in S_{20} . Then k is a permutation and can be written in cycle notation. Each disjoint cycle of k may be written $(n_1, n_2, ..., n_i)$ where $1 < i \le 20$. The cycle $(n_1, n_2, ..., n_i)$ can be rewritten as a product of transpositions, specifically $(n_1, n_i) (n_1, n_{i-1}) ... (n_1, n_3) (n_1, n_2)$. Since we can permute any two distinct positions in G, we can reach k. Thus $G = S_{20}$; that is every permutation in S_{20} can be reached on the TopSpin game.

An algorithm to solve the TopSpin game.

Let 1_o denote the piece with 1 written on it and 2_o denote the piece with two written on it and so on for all twenty pieces.

- I. Positioning the first sixteen pieces.
 - A. Find 2_0 and using an element of $\langle g \rangle$ move it to the 4 position (the clockwise most position in the purple disc).
 - i. If 1_0 is **not** in the 1, 2, or 3 position then do hg³, and repeat i. until 1_0 is in one of the 1, 2, or 3 positions.
 - ii. If 1_0 is in one of the 1, 2, or 3 position:
 - a. If 1_0 is in the 1 position do $(g^{-2}h)$ (gh) to position 2_0 next to 1_0 .
 - b. If 1_0 is in the 2 position do $(g^{-2}h)$ $(g^{-1}h)$ (gh) to position 2_0 next to 1_0 .
 - c. If 1_0 is in the 3 position then 2_0 is next to 1_0 , so continue to B.
 - B. Repeat A replacing 2_0 for 1_0 and 3_0 for 2_0 . Continue repeating A in this manner, positioning the next highest piece, until 16_0 is properly positioned next to 15_0 .
- II. Positioning the remaining four pieces (recall $a = ([hg^{-1}]^2 g^{-4})^5$). A. Using an element of $\langle g \rangle$ (probably g^{-1}) place 16_0 in the 20 position.

- i. If 17_0 is in the 1 position proceed to B.
- ii. If 17_0 is in the 2 position do ag to position 17_0 next to 16_0 .
- iii. If 17_0 is in the 3 position do $g^{-1}ag^2ag$ to position 17_0 next to 16_0 .
- iv. If 17_{o} is in the 4 position do h to position 17_{o} next to 16_{o} .
- B. Using an element of $\langle g \rangle$ (probably g⁻¹) place 17_o in the 20 position.
 - i. If 18_0 is in the 1 position proceed to C.
 - ii. If 18_{o} is in the 2 position do ag to position 18_{o} next to 17_{o} .
 - iii. If 18_0 is in the 3 position do $g^{-1}ag^2ag$ to position 18_0 next to 17_0 .
- C. Using an element of <g> (probably g⁻¹) place 18_o in the 20 position.
 i. If 19_o is in the 1 position then do g⁻² to finish.

 - ii. If 19_0 is in the 2 position do ag⁻¹ to finish.